Section 1.3: Solving Linear Equations

<u>Goal</u>: Solve linear equations and use linear equations to answer questions about real-life situations.

Solving Linear Equations

- Isolate or get the variable by itself.
- Work backwards.
- Use opposite operations.

Examples: Solve each equation.

1.
$$4x - 2x = 15 - 3x$$

2.
$$15(4-y) = 5(10+2y)$$

3.
$$\frac{2}{3}x + \frac{3}{5} = \frac{4}{15}$$

Section 1.6: Solving Linear Inequalities

Goal #1: Solve simple inequalities. ISOLATE THE VARIABLE!

Reminder: Reverse inequality symbol if you

- 1. Multiply or divide both sides by _____
- 2. Rewrite the _____ of the inequality statement

Examples: Solve and graph each inequality.

Goal #2: Solve compound inequalities.

A **compound inequality** is two simple inequalities joined by

or ____.

Graphing Compound Inequalities

Examples: Graph each compound inequality.

1.
$$x < -3$$
 or $x > 1$

2. $x \ge -4$ and $x \le 3$

Solving and Graphing Compound Inequalities

Examples: Solve and graph each compound inequality.

1.
$$-2x + 7 < 3$$
 or $3x + 2 < 2$

2.
$$-12 \le 3x - 3 \le 12$$

Now you try it! Complete the following and be prepared to share your results.

1. Solve the equation:

$$\frac{1}{3}(2x+6)=4-3x$$

2. Solve and graph the compound inequality.

$$\frac{2}{3}x+1 < -1$$
 or $-2x+3 \le 1$

